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ABSTRACT: As part of this research, the Linearized Implicit Scheme, a numerical approach, was 

developed. The calculations will take much less time, and the solution to the nonlinear logarithmic 

Schrodinger's equation will be accurate to the second order in both space and time. The results are then 

compared to those obtained before using the Crank-Nicolson scheme of the finite difference approach. 

Before it is used, this procedure will be tested for accuracy and stability. In this study, conserved amounts 

and accurate solutions are utilized to demonstrate that the proposed method works and can be depended on. 

In addition, research is being conducted to determine how two and three solitons communicate with one 

another. According to the data we acquired for our research, interactions are similar to elastic properties. 
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1. INTRODUCTION 

Nonlinear Schrodinger's (NLS) equation can be applied in a variety of fields, including fluid dynamics, 

biomathematics, nonlinear optics, and plasma physics. One of the most important areas of nonlinear optical 

research in recent years has been the study of how solitons move in optical signals. Since the turn of the 

century, much research has been conducted on optical solitons with log-law nonlinearity, also known as 

optical Gaussons. A large amount of scientific data has previously been made public. The topic of 

integrability has piqued the interest of many experts from around the world. The NLS equation does not 

operate in these nonlinear forms when expressed in this manner. Log-law nonlinearity is a type of nonlinear 

dynamics. It is more difficult to set error bounds for Schrodinger's (log NLS) equation and come up with 

novel ways to employ numbers as a result of the logarithmic nonlinearity explosion. Because there are no 

apparent domain boundaries and the process is not linear, numerically solving Logarithmic Schrodinger's 

equation across unbounded sectors is extremely difficult. 

Biswas and Aceves developed a method for studying visual solitons by perturbing them in 2000. Soliton 

qualities are derived from a modified nonlinear Schrödinger equation . Biswas investigated how disturbance 

terms affect the cooling of optical soliton in 2008. In the same year, Kohl et al. investigated a number of 

nonlinearities, including power law, hyperbolic law, dual-power law, and Kerr law. Biswas et al.  discovered 

a correct one-soliton solution to Schrodinger's equation in 2010, demonstrating log-law nonlinearity and 

unstable disturbances. Khalique and Biswas devised a method in 2010 to merge log-law nonlinearity and 

Schrodinger's equation into a single equation. The Lie symmetry approach was used to accomplish this. This 

enabled tentative responses to be found. Biswas and Milovic discovered a single soliton solution to 

Schrodinger's equation that is not consistent with the log law. The solitary wave approach  was employed to 

accomplish this.... According to Biswas et al. (2011), Schrodinger's nonlinear equation for optical solitons is 

implemented by combining non-Kerr law nonlinearity with perturbation components that exhibit full 

nonlinearity. The goal of this investigation was to see if there were any disturbance elements that 

demonstrated high nonlinearity . Biswas et al.  published a paper on the variational principle-based soliton 

solution in nonlinear optics in 2012. Alex demonstrated in 2016 that the ground state of the logarithmic 

Schrodinger's equation remains orbitally stable in all dimensions and with non-radial disturbances . Troy 

demonstrated in 2016 that every conceivable solution to the logarithmic Schrodinger problem has a positive 
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ground condition . In 2017, Hongwei Zhang and Qingying introduced a series of potential wells and tested 

the logarithmic Schrodinger equation using the fractional logarithmic Sobolev inequality . Standing waves 

were studied by Jaime and Nataliia  using a peak-Gausson profile and a nonlinear logarithmic Schrodinger's 

equation with interaction. 

Bao et al. (2019) investigated two numerical approaches to solving LogSE: a regularized splitting method 

and a regularized conservative Crank-Nicolson finite difference method (CNFD) . Hongwei et al. looked 

specifically at how to find an approximation for the log NLS equation problem in unbounded spaces in 

2019. Because the logarithmic Schrodinger's equation is not linear and has no boundaries, numerically 

solving it in unbounded areas is extremely difficult . BAO et al. (2019) developed and discovered an error 

limit for a regularized finite difference approach applied to the log NLS equation. The emergence of 

logarithmic nonlinearity in the log NLS equation makes limiting mistakes and developing new numerical 

approaches more difficult. In 2019, Wazwaz investigated the logarithmic Schrodinger's equation using the 

variation iteration approach. The research looked into both adding and removing a detuning phrase. That 

same year, Salman and his colleagues investigated bandpass filters and multiphoton absorption. He also 

went into greater detail about the average free speed of optical Gaussons that were affected by random 

events while moving . The Laplace-Adomian decomposition method, according to Gaxiola et al. (2020), 

could be effective for analyzing visual Gaussons. In 2021, Bianru and Enhua investigated the spectral 

technique of regularized Lie-Trotter splitting as a means of preventing the regularized space-fractional 

logarithmic Schrodinger issue from becoming too large . Although the term "detuning" was not generally 

used, it was included to several numerical models. The method's error analysis was also investigated . 

Darvishiat et al. published three new logarithmic nonlinear amplitude equations in 2022. The purpose of this 

research was to identify the source of the Gaussian single waves produced by these logarithmic equations . 

Numerical approaches can be used to understand how equations behave in the real world. As a result, our 

investigation will focus on the linear implicit approach for solving the nonlinear logarithmic Schrodinger's 

problem. This is the first time that researchers have done something like this. 

 

2. PROBLEM STATEMENT 

A numerical solution to the nonlinear logarithmic equation This paper presents Schrodinger's equation using 

a second-order linear implicit differential technique. 

 
What distinguishes a beginning and an end: 

 
where an is the coefficient of the nonlinear term  and b is the coefficient of group velocity spread. We 

assume that in order to avoid doing a lot of labor, 

 
v and w represent the real functions (x, t). When (1) is changed to (2), the linked system shown below 

occurs. 
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3. NUMERICAL METHOD 

 
Furthermore, detailed descriptions can be supplied for the following matrix M components: 
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Receiving a work offer in 

 
Using Crout's approach, the solution to the problem described in Equation (15) can be obtained. To begin, 

we must define two variables. The starting state can be used to calculate U0, which is known at time t = 0. 

U1 is determined at time k and can represent either the exact solution or any two-level scheme.  

 

4. ACCURACY OF THE SCHEME 

 
It has been observed that Equation 18 contains a local truncation error. The approach is considered and 

implemented at the second-order level. With a similar level of diligence (10), one can verify the plan's 

accuracy. 

Stability of the scheme 

Given that van-Neumann stability only applies to linear schemes, the numerical method's stability can be 

examined by exploiting the scheme's nonlinearity in (1). Achieving linearity in the plan can be performed by 

quickly removing any term that impedes its progression. 
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Numerical tests 

Following this part, a series of tests will be carried out to evaluate the proposed approach's performance, and 

the findings will be compared to those obtained using the Crank-Nicholson method. Following the addition 

of the succeeding evaluations, we will now look at the following issues: 

Single Soliton  

 
Table 1 shows a comparison of the error analysis of the linearized implicit scheme and the Crank-Nicolson 

technique using L norms. Table 2 shows the retained quantities of a solitary soliton as determined by the 

Crank-Nicolson method and the linearized implicit scheme. When the same parameters are applied to 

constant soliton values, the two tables show that the linear implicit scheme and the Crank-Nicolson approach 

produce almost identical valid solutions. As shown in Table 3, as h lowers, the linearized implicit gets more 

precise. The linearized implicit technique was used to find a single soliton solution with the parameters 

h=0.1, k=0.0001, and s=0.4, as illustrated in Figure 1. As shown in Figure 2, the linearized implicit 

technique found a single soliton solution with the parameters h=0.05, k=0.001, and s=0.4. 

Table 1. First test: (a) error analysis; compare the linearized implicit scheme and the Crank-Nicolson 
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method 

 

Table 2. First test: (b) quantities preserved compare of the Linearized implicit scheme and Crank Nicolson 

method 

 
Table 3. Second test error Analysis and quantities Preserved using Linearisation method 

 
Collision of two solitons  

A computer experiment then investigates how two solitons can make bidirectional contact. This can be 

performed by using the following document. 

 

During the third examination, the following elements are taken into account: 

 

 

Fig. 1. To mimic a solitary soliton, we used an implicit linearization technique. The given 
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parameters were h = 0.1, k = 0.0001, s = 0.4, 0 t 5, and 0 t 5. 

 
Fig.2. To simulate a solitary soliton, a linearization implicit scheme was used with h = 0.05, k = 0.001, s = 

0.4, and t = 0 to 10. 

Table 4. The final measure of assessment is a comparison of the quantities retained by the Linearized 

implicit plan and the Crank Nicolson technique for the interaction of two solitons. 

 
 

 
Fig. 3. A linearization implicit method collision happens between two solitons at time t = 0. Their values are 

h = 0.1, k = 0.0001, x1 = 0, and x2 = 4.5. 

Table 3 shows a side-by-side comparison of the linearized implicit method and the Crank-Nicholson 

approach for a collision involving two solitons moving in opposite directions at varying velocities from left 

to right. -The two accessible options are 0.4 and 0.8. The data in Figure 3 clearly show that the two solitons 

recover to their initial form following the collision. 

 Interaction of Three Solitons  

This can be performed by using the following document. 

 

The fourth evaluation looks at the following aspects. 

 
Table 5. Fourth test conserved quantities of three solitons interaction by Linearization implicit scheme 
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Fig. 4. Three solitons with the following properties collide at speeds ranging from 0 to 5 times the speed of 

light: h = 0.1, k = 0.0001, x1 = -7, x2 = 0, and x3 = 7. Implicit linearization is proof for this. 

         Figure 5 depicts a computer demonstration of the linearized implicit system in action. This method 

governs the collision of three slithons going in opposite directions who turn left. There is a 0.1 mile per 

hour difference between -2.4 and 2.4 miles per hour. Figure 4 shows that the solitones restore to their initial 

arrangement after the impact. 

 

5. CONCLUSION 

We investigated the log NLS problem theoretically using linearization in this study. The linearization 

strategy produced findings that were nearly as exact as the Crank-Nicolson approach. Furthermore, values 

that were kept were kept. In the absence of restrictions, the linearization approach has comparable stability, 

temporal and spatial accuracy, and accuracy to the second order as the Crank-Nicolson method. It also 

shows how three or two solitons might come into bidirectional contact. Even after being struck by two to 

three soltons, the ductility remained unaltered. Data Access Capability The research is supported by the 

study statistics offered in the publication. Confrontational inconsistencies that appear to be true The study's 

authors claim that they have no obvious conflicts of interest in this investigation. 
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